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the fixed and scaled speedups of the parallel FDTD algorithm were
provided, demonstrating the efficiency and the scalability of the
algorithm on the highly parallel Intel Delta. The existing parallel

FDTD algorithm is capable of supporting upwards of one billion
degrees of freedom on the Intel Delta, and is capable of solving a
problem of this magnitude in quite reasonable amounts of time. With
the rate of advances of RISC processors and dynamic random access
memory, high performance computers will be capable of handling
10’s of billions of degrees of freedom in a fraction of the time using

highly scalable algorithms such as the FDTD in the near future.
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Scattering from a Circular Dielectric Post Embedded
in a Grounded Dielectric Sheet Waveguide

E. Sawado, K. Ishibashi, and K. Hatakeyama

Abstract-A systematic method for obtaining the scattered electric field
in a gronnded dielectric sheet waveguide is presented. It is shown that
point-matching method can be used for an expticit calculation of the
integral eqnation to estimate the scattering from a circnlar dielectric post
embedded in the grounded sheet. Magnitude of the reflection coefficient
as a function of dielectric constant is given.

I. INTRODUCTION

In 1968 Schwinger published the lecture notes on the problem of
electromagnetic scattering by a circular dielectric rod in a rectangulm
waveguide [1]. It was described that, for some special relations
between the frequency, the dielectric coustant, and the radius of the
rod, the reflection coefficient becomes equal to zero [2], [3]. This
problem has been a subject of interest to researchers for many years.
In particular, attention was focused on the dip shown on the curve

of reflection coefficient, illustrating as a function of the dielectric
constant of the post. This phenomenon is due to volume resonance
of the post.

The aim of this paper is to present a theory of scattering by a
dielectric post (dielectric constant; <k = 2e0 N 5006.) embedded
in a grounded dielectric sheet (dielectric constant 6P = Hco, the
permittivity ~ = 2). The point-matching method was used for the
numerical estimation of magnitude of the reflection coefficient for
the dielectric post with various permittivities. Fig. 1 shows the cross
section of this structure. The structure is assumed to be uniform and
infinite in both z and z directions. It is also assumed that substrate
material is lossless.

For TE mode propagation, the electric field EY is a solution of

(1)

where ?& = Wzeopo.
Mathematically the problem of relating a field to its source is

that of integrating au inhomogeneous differential equation. Letting
jwpo~(z – z’)8(z – :’) be the source function, we have the form

–T<.z<o (2)

where R is the relative permittivity. We find the solution for Ev by
means of Laplace transform

J–cc

Multiplying both side of (1) and (2) by e~”, and integrating from
—cc to +@, we have

gg+(v’+k:)g=o O<x (4)
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Fig. 1. Circular inductive post in dielectric sheet.

azg
~ + (T2+ &)g = –jwKo6(z – z’) – T < X <0. (5)

Equations (4) and (5) are satisfied by the functions of the form

.jufl.e~z’ sin {h(z’ + Z’)}e’hz’ (1 + R)e-’~zgl=
N(h, T, R, X’)

O<z (6)

jwp.e~z’ sin {h(z’ + T)}eJh’’(e–Jh$ + ReJh2)g~=
N(h, T, R, X’)

%’<(C<O(7)

jwpoe 72’(1 + Re
g.3=

‘~’x’) sin{h(r’ + T)} _ ~ < ~ <~, (8)

N(lL, T, R, d)

where

IV(h, T, R, z’) = jhsin{h(z’ + T)}(1 – Re2Jbz’)

+ hcos{b(~’ + T)}(I + Re2J~z’) (9)

lr=-yz+d~=~z+kr, P=yz+k; (lo)

and T is the thickness of the sheet. Here R is the reflection coefficient
at an upper interface of the dielectric sheet given by

R = (h– l)/(h+ l). (11)

Inverting (3) gives the solution for Ey, which can be written in the
form

where the contour C is determined such that G(r; r’) behaves proper
at infinity. G(r; r’) is interpreted as the diffracted electric field
intensity Ey of the point of observation (r = x, z) due to a unit
current located at (r-’ = x’, z’).

The branch point is situated at -y-plane, and is situated at y =

+(~) 1’2k. on the upper half y-plane, and the branch cut has been
chosen to begin (K)l/21C0+ jO to (FC)l/2k0 + jca. The integration
with respect to y is, by Carrchy’s residue theorem, given by the sum
of the integrrd along the path – co to +CO, the contribution from
the integral about the branch cut ~bc, and the integral along the
semicircle at infinity ~Cl

J
g(x, y; r’)e–7z d? =

1“
g(x, T; r’)e–72 d~

c —cc

+Jg(r, ~; r’)e–7z d-y
bc

+

/

g(x, -y; r’)e–yz d-y
cl

= 2rrjX Residues. (13)

The integral JCI vanishes at infinity, and the integral contribution
to the residues is zero because no poles exist on the upper half of
the T-plane

/“
g(x, ~; r’)e–~z d~+

I
g(z, -y; r’)(?–y’ dy = O. (14)

—w bc

Converting the branch-cut integral of (14) into h-plane, we have [4]

In order to evahrate (15) for large r by the saddle-point technique,
it is convenient to change the variables of integration and as follows

7 = jksinq$, h=kcosq5 (16)

where kz = &. The integration about the branch-cut which may
be solved by means of a saddle-point technique. This procedure is
accurate only when the size of post is small relative to, wavelength in
the medium. Equation (12) is given by the sum c~fthe four Hankel-like
functions as

Ey = G(r-; r’) = –11 – ~(q5p2)~2 +13 i- ~(dpzr)~-r (17)

where &2, q$P4are defined by (24) and (28) for z’ < z <0, and (32)

and (36) for – T < z < x’, respectively. And, here, tlhe functions 1,
(i = 1, 2, 3, and 4) are given by

ejf.(~.~pt) r. ~’)+~(T/~)
It = F’(k, @p,)

[.ft(k, #pz,r, r’)/2]1/2”
(18)

Here ~; functions are given by

Fz(k, #pz) =
kcos($flpc) 7rl@—.

A(q$pt) 2!
(19)

where

A(&, ) = jh(&, ) sin {h(q&)(. z’ + T)}(l – Re2Jh(~5p,)z’)

+ h(#P, ) cos {h(@P,)(x’ + T)}(l + Re2’h(4’~)z’). (2o)

And f, functions are, for z’ < z <0

~l(k, 4P1, r, r’) = ~cos(4$N){(z – z’)’

+ (2Lz’ +T – X)2}/(2x’ + T – z) (21)

tan(~pl) = (z’ – z)/(2z’ + T – z) (22)

fz(k &2> r, ~’) = ~-(&2){(~ – ~’)2

+ (234+ T + Z)2}/(2X’ + T + Z) (23)

tan(q5Pz) = (z’ – z)/(2.z’ + T + z) (24)

.fs(k, +,3, r, r’) = -~cos(&3){(z - Z’)2 + (T+z)2}/(T+z)
(25)

tan(qbP3) = –(z’ – z)/(T+ ~) [26)

.f.(k, c&. r, r’)= kcos (@p.) {(z–z’)2+(T–z)2 }/(T-z) (27)

tan(q$pq) = –(z’ – z)/(T’ -- m) (28)

and, for –T < x < x’

fI(k, q5pl, r, r’) = kcos(&l){(z-.z’) 2+(x+ T)2}/(.v+T) (29)

tan(&l) = (z’ – z)/(Z+ ‘T) (30)
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Fig. 2. Magnitude of the reflection coefficient as a function of dielectric
constant (Ag = 3.12 cm, K = 2, a = 2.2 mm, T = 16 mm).

.f2(k, &2, T, r’) = ~COS (&2){(z – ~’)2

+ (2Z’ +T+z)’}/(2%’ +T+z) (31)

tan (@Pa) = (z’ – 2)/(2x’+ T + X) (32)

f3(& #P3, ~>~’) = -~cos($JP3){(~ - ~’)’ + (~+~)2}/(~+~)
(33)

tan(@Ps) = –(.z’ – ~)/(z+T) (34)

f4(~, fPP4>~>~’) = –~co5(&4){(~ – ~’)’

+ (c+ T – 2z’)2}/(z + T – 2z’) (35)

tan (4,4) = –(2’ – z)/(T+z – 2x’). (36)

The scattered electric field E; due to a whole current distribution
in a dielectric post is, therefore

E;(2, z) = –jwpo
J

. G(A z; z’, Z’)~v (Z’, z’) dx’ dz’ (37)
s

where S’ is the crosssection of the post. G(x, z; d, z’) of (17) is
used for the estimation of the scattering integral given by (37). In
the volume integral equation approach, we can replace the inductive
dielectric post by equivalent volume currents tlv given by [5]

Jv(z, z) = jOJ(eP – e~)Ev(.z, z) (38)

where

-EV(.E, o) = -E; (z, z) +EJ(z, .z). (39)

Letting E; denote the incident field, and using (38) and (39), we

can write the following integral equation for the unknown current
distributions Jv (z, z)

E;(z, z) =
.J, (Z, 2)

– E;(x, z)
Jkl(ep – tk)

(40)

where the scattered electric field E; (r, z) is given by (37).

As a simple example of the above procedure we computed the

reflection coefficient for a circular dielectric post of diameter a located

in a dielectric sheet of thickness T with its axis parallel to the trans-
verse electric fields. To solve this problem, a point-matching method
which is a direct moment method with the weighting functions being
Dirac’s delta functions, is used to obtain the scattered fields E;.
Magnitude of the reflection coefficient \rl is given by

In.1
(41)

“ rz— TJ2

The cross sectionrd area s’ is divided into 360 small rectangular

cells. The relevant parameters are a = 2.2 mm, AO = 3.12 cm,
and x = 2. Fig. 2 shows the reflection coefficient as a function of
the dielectric constant. This numerical estimation shows the resonant
conditions of CP = 37.36E0, 122.2160, 447.46eo.

II. CONCLUSION

It is emphasized that this analysis is apparently powerful since
it is not limited to the case of circular post but is general in that
post of arbitrary crosssection, location, and number can be handled
effectively.
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