

the fixed and scaled speedups of the parallel FDTD algorithm were provided, demonstrating the efficiency and the scalability of the algorithm on the highly parallel Intel Delta. The existing parallel FDTD algorithm is capable of supporting upwards of one billion degrees of freedom on the Intel Delta, and is capable of solving a problem of this magnitude in quite reasonable amounts of time. With the rate of advances of RISC processors and dynamic random access memory, high performance computers will be capable of handling 10's of billions of degrees of freedom in a fraction of the time using highly scalable algorithms such as the FDTD in the near future.

ACKNOWLEDGMENT

This research was performed in part using the Intel Touchstone Delta System operated by the California Institute of Technology on behalf of the Concurrent Supercomputing Consortium. Access to this facility as well as to the Cray-YMP was provided by the Jet Propulsion Laboratory, Pasadena, CA.

REFERENCES

- [1] D. Sheen, S. Ali, M. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," *IEEE Trans. Microwave Theory Tech.*, vol. 38, pp. 849-856, July 1990.
- [2] X. Zhang, J. Fang, K. Mei, and W. Lin, "Calculation of the dispersive characteristics of microstrips by a time-domain finite-difference method," *IEEE Trans. Microwave Theory Tech.*, vol. 36, pp. 263-267, Jan. 1988.
- [3] A. Taflove and M. E. Brodin, "Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell's equations," *IEEE Trans. Microwave Theory Tech.*, vol. 23, pp. 623-630, Aug. 1975.
- [4] K. Kunz and R. Luebbers, *The Finite-Difference Time-Domain Method for Electromagnetics*. Boca Raton, FL: CRC Press., 1993.
- [5] M. Piket-May, A. Taflove, and J. Baron, "FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads," *IEEE Trans. Microwave Theory Tech.*, vol. 42, pp. 1514-1523, Aug. 1994.
- [6] J. Patterson, T. Cwik, R. Ferraro, N. Jacobi, P. Liewer, T. Lockhart, G. Lyzenga, J. Parker, and D. Simoni, "Parallel computation applied to electromagnetic scattering and radiation analysis," *Electromagnetics*, vol. 10, pp. 21-40, Jan.-June 1990.
- [7] R. D. Ferraro, "Solving partial differential equations for electromagnetic scattering problems on coarse-grained concurrent computers," in *Computational Electromagnetics and Supercomputer Architecture*, T. Cwik and J. Patterson, Eds. vol. 7; also in *Progress in Electromagnetics Research*, J. A. Kong, Ed. Cambridge, MA: EMW Publishing, 1993, vol. 7, pp. 111-154.
- [8] A. Perlik, T. Opsahl, and A. Taflove, "Predicting scattering of electromagnetic fields using the FD-TD on a connection machine," *IEEE Trans. Magn.*, vol. 25, pp. 2910-2912, July 1989.
- [9] A. Perlik and S. Moraites, "Electromagnetic wave analysis using FD-TD and its implementation on the connection machine," in *Computational Electromagnetics and Supercomputer Architecture*, M. Morgan, Ed., vol. 7; also in *Progress in Electromagnetics Research*, J. A. Kong, Ed. Cambridge, MA: EMW Publishing, 1993, vol. 7, pp. 266-308.
- [10] W. C. Chew, *Waves and Fields in Inhomogeneous Media*. New York: Van Nostrand, 1990.
- [11] V. Betz and R. Mittra, "Comparison and evaluation of boundary conditions for the absorption of guided waves in an FDTD simulation," *IEEE Microwave and Guided Wave Lett.*, vol. 2, pp. 499-401, Dec. 1992.
- [12] Stephen D. Gedney, "Finite-difference time-domain analysis of microwave circuit devices on high performance parallel computers," Univ. of Kentucky, Lexington, KY. Elec. Eng. Tech. Rep. EE-1-94, Feb. 1994.

Scattering from a Circular Dielectric Post Embedded in a Grounded Dielectric Sheet Waveguide

E. Sawado, K. Ishibashi, and K. Hatakeyama

Abstract—A systematic method for obtaining the scattered electric field in a grounded dielectric sheet waveguide is presented. It is shown that point-matching method can be used for an explicit calculation of the integral equation to estimate the scattering from a circular dielectric post embedded in the grounded sheet. Magnitude of the reflection coefficient as a function of dielectric constant is given.

I. INTRODUCTION

In 1968 Schwinger published the lecture notes on the problem of electromagnetic scattering by a circular dielectric rod in a rectangular waveguide [1]. It was described that, for some special relations between the frequency, the dielectric constant, and the radius of the rod, the reflection coefficient becomes equal to zero [2], [3]. This problem has been a subject of interest to researchers for many years. In particular, attention was focused on the dip shown on the curve of reflection coefficient, illustrating as a function of the dielectric constant of the post. This phenomenon is due to volume resonance of the post.

The aim of this paper is to present a theory of scattering by a dielectric post (dielectric constant; $\epsilon_k = 2\epsilon_o \sim 500\epsilon_o$) embedded in a grounded dielectric sheet (dielectric constant $\epsilon_p = \kappa\epsilon_o$, the permittivity $\kappa = 2$). The point-matching method was used for the numerical estimation of magnitude of the reflection coefficient for the dielectric post with various permittivities. Fig. 1 shows the cross section of this structure. The structure is assumed to be uniform and infinite in both x and z directions. It is also assumed that substrate material is lossless.

For TE mode propagation, the electric field E_y is a solution of

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial z^2} + k_0^2 E_y = 0 \quad 0 < x \quad (1)$$

where $k_o^2 = \omega^2 \epsilon_o \mu_o$.

Mathematically the problem of relating a field to its source is that of integrating an inhomogeneous differential equation. Letting $j\omega\mu_o\delta(x - x')\delta(z - z')$ be the source function, we have the form

$$\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial z^2} + \kappa k_o^2 E_y = -j\omega\mu_o\delta(x - x')\delta(z - z') \quad -T < x < 0 \quad (2)$$

where κ is the relative permittivity. We find the solution for E_y by means of Laplace transform

$$g(x, \gamma) = \int_{-\infty}^{\infty} E(x, z) e^{\gamma z} dz. \quad (3)$$

Multiplying both side of (1) and (2) by $e^{\gamma z}$, and integrating from $-\infty$ to $+\infty$, we have

$$\frac{\partial^2 g}{\partial x^2} + (\gamma^2 + k_o^2)g = 0 \quad 0 < x \quad (4)$$

Manuscript received February 24, 1995; revised June 29, 1995.

E. Sawado is with the Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-03, Japan.

K. Ishibashi is with the Tokai University, Department of Mechanical Engineering, Tomigaya, Shibuya-ku, Tokyo, 151, Japan.

K. Hatakeyama is with the NEC Corporation, Miyazaki, Miyamae-ku, Kawasaki, Kanagawa, 216, Japan.

IEEE Log Number 9414233.

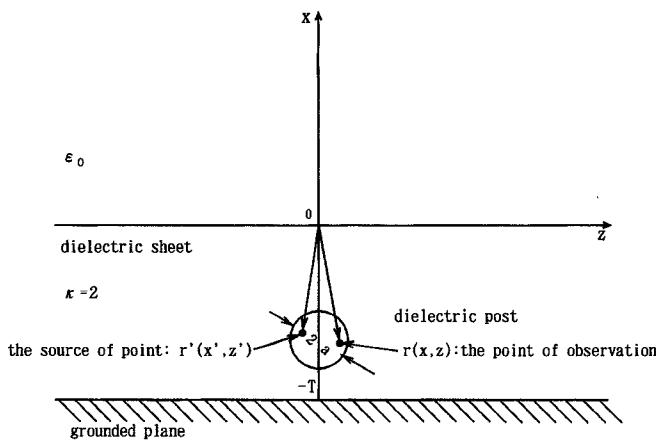


Fig. 1. Circular inductive post in dielectric sheet.

$$\frac{\partial^2 g}{\partial x^2} + (\gamma^2 + \kappa k_o^2)g = -j\omega\mu_o\delta(x - x') - T < x < 0. \quad (5)$$

Equations (4) and (5) are satisfied by the functions of the form

$$g_1 = \frac{j\omega\mu_o e^{\gamma z'} \sin\{h(x' + T)\} e^{jhx'} (1 + R) e^{-jlx}}{N(h, T, R, x')} \quad 0 < x \quad (6)$$

$$g_2 = \frac{j\omega\mu_o e^{\gamma z'} \sin\{h(x' + T)\} e^{jhx'} (e^{-jhx} + \text{Re}^{jhx})}{N(h, T, R, x')} \quad x' < x < 0 \quad (7)$$

$$g_3 = \frac{j\omega\mu_o e^{\gamma z'} (1 + \text{Re}^{2jhx'}) \sin\{h(x' + T)\}}{N(h, T, R, x')} - T < x < x' \quad (8)$$

where

$$N(h, T, R, x') = jh \sin\{h(x' + T)\} (1 - \text{Re}^{2jhx'}) + h \cos\{h(x' + T)\} (1 + \text{Re}^{2jhx'}) \quad (9)$$

$$h^2 = \gamma^2 + \kappa k_o^2 = \gamma^2 + k^2, \quad l^2 = \gamma^2 + k_o^2 \quad (10)$$

and T is the thickness of the sheet. Here R is the reflection coefficient at an upper interface of the dielectric sheet given by

$$R = (h - l)/(h + l). \quad (11)$$

Inverting (3) gives the solution for E_y , which can be written in the form

$$E_y = G(r; r') = \frac{1}{2\pi} \int_C g(x, \gamma; r') e^{-\gamma z} d\gamma \quad (12)$$

where the contour C is determined such that $G(r; r')$ behaves properly at infinity. $G(r; r')$ is interpreted as the diffracted electric field intensity E_y of the point of observation ($r = x, z$) due to a unit current located at ($r' = x', z'$).

The branch point is situated at γ -plane, and is situated at $\gamma = +(\kappa)^{1/2}k_o$ on the upper half γ -plane, and the branch cut has been chosen to begin $(\kappa)^{1/2}k_o + jO$ to $(\kappa)^{1/2}k_o + j\infty$. The integration with respect to γ is, by Cauchy's residue theorem, given by the sum of the integral along the path $-\infty$ to $+\infty$, the contribution from the integral about the branch cut \int_{bc} , and the integral along the semicircle at infinity \int_{c1}

$$\begin{aligned} \int_C g(x, \gamma; r') e^{-\gamma z} d\gamma &= \int_{-\infty}^{\infty} g(x, \gamma; r') e^{-\gamma z} d\gamma \\ &\quad + \int_{bc} g(x, \gamma; r') e^{-\gamma z} d\gamma \\ &\quad + \int_{c1} g(x, \gamma; r') e^{-\gamma z} d\gamma \\ &= 2\pi j \sum \text{Residues.} \end{aligned} \quad (13)$$

The integral \int_{c1} vanishes at infinity, and the integral contribution to the residues is zero because no poles exist on the upper half of the γ -plane

$$\int_{-\infty}^{\infty} g(x, \gamma; r') e^{-\gamma z} d\gamma + \int_{bc} g(x, \gamma; r') e^{-\gamma z} d\gamma = 0. \quad (14)$$

Converting the branch-cut integral of (14) into h -plane, we have [4]

$$\int_{bc} g(x, \gamma; r') e^{-\gamma z} d\gamma = \int_{-\infty}^{\infty} g(x, \gamma; r') e^{-\gamma z} \frac{\partial \gamma}{\partial h} dh. \quad (15)$$

In order to evaluate (15) for large r by the saddle-point technique, it is convenient to change the variables of integration and as follows

$$\gamma = jk \sin \phi, \quad h = k \cos \phi \quad (16)$$

where $k^2 = \kappa k_o^2$. The integration about the branch-cut which may be solved by means of a saddle-point technique. This procedure is accurate only when the size of post is small relative to wavelength in the medium. Equation (12) is given by the sum of the four Hankel-like functions as

$$E_y = G(r; r') = -I_1 - R(\phi_{p2})I_2 + I_3 + R(\phi_{p4})I_4 \quad (17)$$

where ϕ_{p2}, ϕ_{p4} are defined by (24) and (28) for $x' < x < 0$, and (32) and (36) for $-T < x < x'$, respectively. And, here, the functions I_i ($i = 1, 2, 3$, and 4) are given by

$$I_i = F(k, \phi_{pi}) \frac{e^{jf_i(k, \phi_{pi}, r, r') + j(\pi/4)}}{[f_i(k, \phi_{pi}, r, r')/2]^{1/2}}. \quad (18)$$

Here F_i functions are given by

$$F_i(k, \phi_{pi}) = \frac{k \cos(\phi_{pi}) \pi^{1/2}}{\Delta(\phi_{pi})} \quad (19)$$

where

$$\Delta(\phi_{pi}) = jh(\phi_{pi}) \sin\{h(\phi_{pi})(x' + T)\} (1 - \text{Re}^{2jh(\phi_{pi})x'}) + h(\phi_{pi}) \cos\{h(\phi_{pi})(x' + T)\} (1 + \text{Re}^{2jh(\phi_{pi})x'}). \quad (20)$$

And f_i functions are, for $x' < x < 0$

$$f_1(k, \phi_{p1}, r, r') = k \cos(\phi_{p1}) \{(z - z')^2 + (2x' + T - x)^2\} / (2x' + T - x) \quad (21)$$

$$\tan(\phi_{p1}) = (z' - z) / (2x' + T - x) \quad (22)$$

$$f_2(k, \phi_{p2}, r, r') = k \cos(\phi_{p2}) \{(z - z')^2 + (2x' + T + x)^2\} / (2x' + T + x) \quad (23)$$

$$\tan(\phi_{p2}) = (z' - z) / (2x' + T + x) \quad (24)$$

$$f_3(k, \phi_{p3}, r, r') = -k \cos(\phi_{p3}) \{(z - z')^2 + (T + x)^2\} / (T + x) \quad (25)$$

$$\tan(\phi_{p3}) = -(z' - z) / (T + x) \quad (26)$$

$$f_4(k, \phi_{p4}, r, r') = k \cos(\phi_{p4}) \{(z - z')^2 + (T - x)^2\} / (T - x) \quad (27)$$

$$\tan(\phi_{p4}) = -(z' - z) / (T - x) \quad (28)$$

and, for $-T < x < x'$

$$f_1(k, \phi_{p1}, r, r') = k \cos(\phi_{p1}) \{(z - z')^2 + (x + T)^2\} / (x + T) \quad (29)$$

$$\tan(\phi_{p1}) = (z' - z) / (x + T) \quad (30)$$

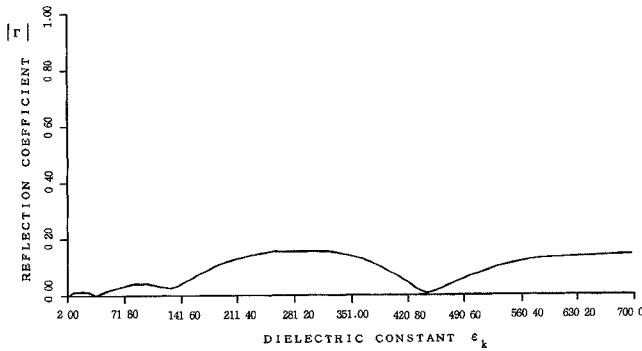


Fig. 2. Magnitude of the reflection coefficient as a function of dielectric constant ($\lambda_g = 3.12$ cm, $\kappa = 2$, $a = 2.2$ mm, $T = 16$ mm).

$$f_2(k, \phi_{p2}, r, r') = k \cos(\phi_{p2}) \{ (z - z')^2 + (2x' + T + x)^2 \} / (2x' + T + x) \quad (31)$$

$$\tan(\phi_{p2}) = (z' - z) / (2x' + T + x) \quad (32)$$

$$f_3(k, \phi_{p3}, r, r') = -k \cos(\phi_{p3}) \{ (z - z')^2 + (x + T)^2 \} / (x + T) \quad (33)$$

$$\tan(\phi_{p3}) = -(z' - z) / (x + T) \quad (34)$$

$$f_4(k, \phi_{p4}, r, r') = -k \cos(\phi_{p4}) \{ (z - z')^2 + (x + T - 2x')^2 \} / (x + T - 2x') \quad (35)$$

$$\tan(\phi_{p4}) = -(z' - z) / (T + x - 2x'). \quad (36)$$

The scattered electric field E_y^s due to a whole current distribution in a dielectric post is, therefore

$$E_y^s(x, z) = -j\omega\mu_0 \int_s \cdot G(x, z; x', z') J_y(x', z') dx' dz' \quad (37)$$

where S' is the crosssection of the post. $G(x, z; x', z')$ of (17) is used for the estimation of the scattering integral given by (37). In the volume integral equation approach, we can replace the inductive dielectric post by equivalent volume currents J_y given by [5]

$$J_y(x, z) = j\omega(\epsilon_p - \epsilon_k) E_y(x, z) \quad (38)$$

where

$$E_y(x, z) = E_y^i(x, z) + E_y^s(x, z). \quad (39)$$

Letting E_y^i denote the incident field, and using (38) and (39), we can write the following integral equation for the unknown current distributions $J_y(x, z)$

$$E_y^i(x, z) = \frac{J_y(x, z)}{j\omega(\epsilon_p - \epsilon_k)} - E_y^s(x, z) \quad (40)$$

where the scattered electric field $E_y^s(x, z)$ is given by (37).

As a simple example of the above procedure we computed the reflection coefficient for a circular dielectric post of diameter a located in a dielectric sheet of thickness T with its axis parallel to the transverse electric fields. To solve this problem, a point-matching method which is a direct moment method with the weighting functions being Dirac's delta functions, is used to obtain the scattered fields E_y^s . Magnitude of the reflection coefficient $|\Gamma|$ is given by

$$|\Gamma| = \left| \frac{E_y^s}{E_y^i} \right|_{\substack{z \sim -100\lambda_g \\ x = -T/2}}. \quad (41)$$

The cross sectional area s' is divided into 360 small rectangular cells. The relevant parameters are $a = 2.2$ mm, $\lambda_0 = 3.12$ cm, and $\kappa = 2$. Fig. 2 shows the reflection coefficient as a function of the dielectric constant. This numerical estimation shows the resonant conditions of $\epsilon_p = 37.36\epsilon_0$, $122.21\epsilon_0$, $447.46\epsilon_0$.

II. CONCLUSION

It is emphasized that this analysis is apparently powerful since it is not limited to the case of circular post but is general in that post of arbitrary crosssection, location, and number can be handled effectively.

REFERENCES

- [1] J. Schwinger and D. S. Saxon, *Discontinuities in Waveguides*. New York: Gordon and Breach, 1968.
- [2] J. N. Sahalos and E. Vafadis, "On the narrow-band microwave filter design using dielectric rod," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-33, pp. 1165-1171, 1985.
- [3] Y. Leviatan and G. S. Sheaffer, "Analysis of inductive dielectric posts in rectangular waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-35, pp. 48-59, 1987.
- [4] T. Tamir, and A. A. Oliner, "Guided complex waves, part 1: Fields at an interface," *Proc. IEE*, vol. 110, pp. 310-324, 1963.
- [5] J. J. Wang, *Generalized Moment Methods in Electromagnetics*. New York: Wiley, 1991.