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the fixed and scaled speedups of the parallel FDTD algorithm were
provided, demonstrating the efficiency and the scalability of the
algorithm on the highly parallel Intel Delta. The existing parallel
FDTD algorithm is capable of supporting upwards of one billion
degrees of freedom on the Intel Delta, and is capable of solving a
problem of this magnitude in quite reasonable amounts of time. With
the rate of advances of RISC processors and dynamic random access
memory, high performance computers will be capable of handling
10’s of billions of degrees of freedom in a fraction of the time using
highly scalable algorithms such as the FDTD in the near future.
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Scattering from a Circular Dielectric Post Embedded
in a Grounded Dielectric Sheet Waveguide

E. Sawado, K. Ishibashi, and K. Hatakeyama

Abstract—A systematic method for obtaining the scattered electric field
in a grounded dielectric sheet waveguide is presented. It is shown that
point-matching method can be used for an explicit calculation of the
integral equation to estimate the scattering from a circular dielectric post
embedded in the grounded sheet. Magnitude of the reflection coefficient
as a function of dielectric constant is given.,

I. INTRODUCTION

In 1968 Schwinger published the lecture notes on the problem of
electromagnetic scattering by a circular dielectric rod in a rectangular
waveguide [1]. It was described that, for some special relations
between the frequency, the dielectric constant, and the radius of the
rod, the reflection coefficient becomes equal to zero [2], [3]. This
problem has been a subject of interest to researchers for many years.
In particular, attention was focused on the dip shown on the curve
of reflection coefficient, illustrating as a function of the dielectric
constant of the post. This phenomenon is due to volume resonance
of the post.

The aim of this paper is to present a theory of scattering by a
dielectric post (dielectric constant; € = 2¢, ~ 500¢,) embedded
in a grounded dielectric sheet (dielectric constant €, = k¢,, the
permittivity ¥ = 2). The point-matching method was used for the
numerical estimation of magnitude of the reflection coefficient for
the dielectric post with various permittivities. Fig. 1 shows the cross
section of this structure. The structure is assumed to be uniform and
infinite in both x and z directions. It is also assumed that substrate
material is lossless.

For TE mode propagation, the electric field E, is a solution of

8’FE 0*FE
812y + sz_y +hoEy =0
where kz = wzeouo.

Mathematically the problem of relating a field to its source is
that of integrating an inhomogeneous differential equation. Letting
Jwiob(x — x')6(z — #') be the source function, we have the form
8°E, O°E,

Ox? 9z2

O0<r §))

-+ KkiEy = —jwited(x — 2)6(z — 2')
—T<z<0 Q)

_|_

where & is the relative permittivity. We find the solution for E, by
means of Laplace transform

oz, 7) = / ” B, 2)¢" d=. 3)

Multiplying both side of (1) and (2) by 7%, and integrating from
—o0 10 +00, we have

g

Ox?
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Fig. 1. Circular inductive post in dielectric sheet.

9’ /
%-Z_ + (v + kk2)g = —jop.d(e —a) =T <2 <0. (5

Equations (4) and (5) are satisfied by the functions of the form
_ jwpee™ sin {h(z' + T)}e’*= (1 4 R

g1 N T. R, ) 0<z (6)
_ jwpee™ sin {h(z' + T)}e'"* (777" 4 Re?"®)
2= N(h, T, R, )
P <x<0 (N
. 2! 25hz’y s ’
g3 = Jwpee” (1 x(l;{: ;7 }g,s;rll){h(a' +T)} T<z<z @
where

N(h7 T> R7 il?l) = jh Sin{h(;[', + T)}(l - ReZJhac’)
+ hcos{h(z' + T)}1+ Re¥™") (9)

h? :72+nk3 ='y2+1927 2 :’yz+kz (10)

and T is the thickness of the sheet. Here R is the reflection coefficient
at an upper interface of the dielectric sheet given by

R=(h=D/(h+1D. 1)

Inverting (3) gives the solution for F,, which can be written in the
form

E,=G(r;v') = %/g(w» v; v )e " dy (12)
where the contour C' is determined such that G(r; ') behaves proper
at infinity. G(r; ') is interpreted as the diffracted electric field
intensity E, of the point of observation (r = =z, z) due to a unit
current located at (v’ = 2/, 2').

The branch point is situated at -y-plane, and is situated at v =
+(k)'/?k, on the upper half y-plane, and the branch cut has been
chosen to begin (k)'/2k, + jO 10 (k)'/%k, + joo. The integration
with respect to « is, by Cauchy’s residue theorem, given by the sum
of the integral along the path —co to +oo, the contribution from
the integral about the branch cut [, and the integral along the
semicircle at infinity [

/g(w’ 3 r')e'”d7=/ gz, v; e " dy
+/ gz, v; r')e” " dy
be

+/ glx, v 1')e " dy
cl

= 2mj% Residues. (13)
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The integral fcl vanishes at infinity, and the integral contribution
to the residues is zero because no poles exist on the upper half of
the v-plane

/ g(z, v r')e””zd7+/ gz, vir)e " dy=0. (14)
be

—00

Converting the branch-cut integral of (14) into h-plane, we have [4]

! -z it ! -~z 6’7
glm, vir)e Vdy= [ gla,v;r)e” o dh. (15)
be — oo oh
In order to evaluate (15) for large r by the saddle-point technique,

it is convenient to change the variables of integration and as follows

v = jksin ¢, h=kcos¢ (16)
where k* = xk2. The integration about the branch-cut which may
be solved by means of a saddle-point technique. This procedure is
accurate only when the size of post is small relative to wavelength in
the medium. Equation (12) is given by the sum of the four Hankel-like

functions as
Ey=G(r;v") = =L = R(¢p2) 2 + I3 + R(¢ps) L

where ¢p2, ¢pa are defined by (24) and (28) for 2’ < = < 0, and (32)
and (36) for —T < z < x', respectively. And, here, the functions I,
(¢ =1, 2,3, and 4) are given by

)

eIk, bpy. v ) ta(n/4)

I = F(k, q’)pl)[fz(k’ PRy VR (18)
Here F; functions are given by
k cos (¢p.) /2
F(k, dp) = —————— 19
where
A(@p) = jh($p:) sin {h(gp:) (2’ + T)}(1 = Re? M0
+ h(dp.) cos {A(6p) (2" + T)}(1 + Re2H(#20%")  (20)

And f, functions are, for 2’ < z < 0
Filk, ¢p1, 7, 7') = kcos (ép1){(z — Z')?
+(22 +T-2)*}/(22' + T -2) Q1)

tan (¢p1) = (2 — 2)/ (22 + T — «) 22)

fz(k, Pp2, T, T’) = kcos (¢'P2){(Z - Z,)z
+ Q¢ +T+2)%}/ 22 +T+2) (23)

tan (dp2) = (2 — 2)/ (22 + T + ) 24)

fa(k, dp3, 7, 7') = —kcos (¢ps){(z — )2 + (T + 2)*} /(T + z)
5)

tan (¢p3) = —(2' — 2)/(T + ) (26)

fa(k, pa. v, 1') = kcos (ppa){(z— 22 +H(T—2)*}/(T—z) Q27)
tan (¢pa) = —(z' — 2)/(T — x) (28)

and, for -7 < z < '
Filk, dp1, v v') = kcos (¢p1){(z—2) 2 +(2+T)*}/ (x+T) (29)

tan (¢p1) = (2" — 2)/ (¢ + T) ')
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Fig. 2. Magnitude of the reflection coefficient as a function of dielectric
constant (A\g = 3.12 ¢cm, £ = 2, a = 2.2 mm, T = 16 mm).
Folk, dp2, 7, 1) = kcos (¢p2){(z — 2)?

+ (22" + T +2)°}/ 22 +T+2) (31)

tan (dp2) = (2 — 2)/(22' + T + ) 32)

fa(k, ¢p3, 7, ') = —kcos (¢p3){(z — 2') + (x + T)’}/(z + T)
33)

tan(¢p3)=—(z'-—z)/(:c+T) (34)

f4(k7 ¢p47 r, 7',) = —k cos (¢p4){(2 - Zl)z
+(z+T -2} (x+T-22") (35)

tan (¢pe) = —(2' = 2)/(T + z — 2z'). (36)

The scattered electric field E} due to a whole current distribution
in a dielectric post is, therefore

Ej(z, 2) = —jwuo/ -G, 2z &, )T, Fda' d2 (37)

where S’ is the crosssection of the post. G(z, z; &, 2') of (17) is
used for the estimation of the scattering integral given by (37). In
the volume integral equation approach, we can replace the inductive
dielectric post by equivalent volume currents J, given by [5]

Jy(z, 2) = jw(e, — €x) Ey(xz, 2) (38)
where

Ey(z, 2) = E (2, 2) + E,(z, 2). (39
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Letting E;, denote the incident field, and using (38) and (39), we
can write the following integral equation for the unknown current
distributions J,(, z)

Jy(x7 :)

Jwlep — €x)

Ey(x, z) = —-E,(z, z) (40)
where the scattered electric field E; (x, z) is given by (37).

As a simple example of the above procedure we computed the
reflection coefficient for a circular dielectric post of diameter a located
in a dielectric sheet of thickness T" with its axis parallel to the trans-
verse electric fields. To solve this problem, a point-matching method
which is a direct moment method with the weighting functions being
Dirac’s delta functions, is used to obtain the scattered fields F;.
Magnitude of the reflection coefficient |I'| is given by
E;
£,

T = 41

2~v—100Ag )
z=—T/2

The cross sectional area s’ is divided into 360 small rectangular
cells. The relevant parameters are ¢ = 2.2 mm, do = 3.12 cm,
and £ = 2. Fig. 2 shows the reflection coefficient as a function of
the dielectric constant. This numerical estimation shows the resonant
conditions of €, = 37.36¢,, 122.21¢,, 447.46¢,.

II. CoNCLUSION

It is emphasized that this analysis is apparently powerful since
it is not limited to the case of circular post but is general in that
post of arbitrary crosssection, location, and number can be handled
effectively.

REFERENCES

(1] I. Schwinger and D. S. Saxon, Discontinuities in Waveguides. New
York: Gordon and Breach, 1968.

[2] J. N. Sahalos and E. Vafiadis, “On the narrow-band microwave filter
design using dielectric rod,” JEEE Trans. Microwave Theory Tech., vol.
MTT-33, pp. 1165-1171, 1985.

[3] Y. Leviatan and G. S. Sheaffer, “Analysis of inductive dielectric posts
in rectangular waveguide,” IEEE Trans. Microwave Theory Tech., vol.
MTT-35, pp. 48-59, 1987.

[4] T. Tamir, and A. A. Oliner, “Guided complex waves, part 1: Fields at
an interface,” Proc. IEE, vol. 110, pp. 310-324, 1963.

[51 J. J. Wang, Generalized Moment Methods in Electromagnetics.
York: Wiley, 1991.

New



